🚀 Deployment Guide
← API Documentation | Overview →
Table of Contents
Prerequisites
System Requirements
Component |
Requirement |
Node.js |
v16.x or higher |
Python |
v3.8 or higher |
Docker |
v20.x or higher |
Hardhat |
v2.9.x or higher |
Solidity |
^0.8.0 |
Environment Setup
# Install dependencies
npm install
# Install Python requirements
pip install -r requirements.txt
# Configure environment
cp .env.example .env
Smart Contract Deployment
Deployment Flow
sequenceDiagram
participant Dev
participant Local
participant Test
participant Prod
Dev->>Local: Local Testing
Local->>Test: Testnet Deploy
Test->>Dev: Validation
Dev->>Prod: Production Deploy
Prod->>Dev: Verification
Contract Deployment Steps
# 1. Compile contracts
npx hardhat compile
# 2. Run tests
npx hardhat test
# 3. Deploy to testnet
npx hardhat deploy --network goerli
# 4. Verify contracts
npx hardhat verify --network goerli <CONTRACT_ADDRESS>
Configuration Example
module.exports = {
networks: {
hardhat: {
chainId: 1337
},
goerli: {
url: process.env.GOERLI_URL,
accounts: [process.env.PRIVATE_KEY]
},
mainnet: {
url: process.env.MAINNET_URL,
accounts: [process.env.PRIVATE_KEY]
}
},
solidity: {
version: "0.8.17",
settings: {
optimizer: {
enabled: true,
runs: 200
}
}
}
};
ML Service Deployment
Architecture Overview
graph TD
subgraph ML Infrastructure
A[Data Pipeline]
B[Training Service]
C[Inference Service]
D[Model Registry]
end
subgraph Deployment
E[Kubernetes Cluster]
F[Load Balancer]
G[Monitoring]
end
A --> B
B --> D
D --> C
C --> E
E --> F
E --> G
The ML service architecture consists of several key components:
- Data Pipeline: Collects and processes data for model training and inference
- Training Service: Handles model training and validation
- Inference Service: Serves model predictions in production
- Model Registry: Stores and version controls trained models
- Deployment Infrastructure: Manages the production environment
Docker Configuration
# Base image
FROM pytorch/pytorch:latest
# Install dependencies
COPY requirements.txt .
RUN pip install -r requirements.txt
# Copy application code
COPY . /app
WORKDIR /app
# Set environment variables
ENV MODEL_PATH=/app/models
ENV CONFIG_PATH=/app/config
# Expose port
EXPOSE 8080
# Run application
CMD ["python", "app/main.py"]
Kubernetes Deployment
apiVersion: apps/v1
kind: Deployment
metadata:
name: riskify-ml
spec:
replicas: 3
selector:
matchLabels:
app: riskify-ml
template:
metadata:
labels:
app: riskify-ml
spec:
containers:
- name: riskify-ml
image: riskify/ml-service:latest
ports:
- containerPort: 8080
resources:
limits:
cpu: "2"
memory: "4Gi"
requests:
cpu: "1"
memory: "2Gi"
Infrastructure Setup
Network Architecture
graph TB
subgraph External
CLI["Clients"]
API["API Gateway"]
end
subgraph Services
WEB["Web Server"]
APP["Application"]
ML["ML Service"]
end
subgraph Data
DB["Database"]
CACHE["Cache"]
MQ["Message Queue"]
end
External --> Services
Services --> Data
Load Balancing
graph LR
subgraph Load Balancer
LB["NGINX"]
HC["Health Check"]
end
subgraph Backend
S1["Server 1"]
S2["Server 2"]
S3["Server 3"]
end
LB --> S1
LB --> S2
LB --> S3
HC --> S1
HC --> S2
HC --> S3
Monitoring & Maintenance
Monitoring Architecture
graph TB
%% Styling
classDef collection fill:#4a5568,stroke:#2d3748,color:white,stroke-width:2px,font-weight:bold
classDef processing fill:#718096,stroke:#4a5568,color:white,stroke-width:2px,font-weight:bold
classDef visualization fill:#718096,stroke:#4a5568,color:white,stroke-width:2px,font-weight:bold
classDef node fill:#f7fafc,stroke:#e2e8f0,color:#2d3748,stroke-width:1px
subgraph DataCollection["Data Collection"]
direction TB
LOG["Logs"]
MET["Metrics"]
TRC["Traces"]
end
subgraph Processing["Processing"]
direction TB
AGG["Aggregation"]
ANA["Analysis"]
ALT["Alerting"]
end
subgraph Visualization["Visualization"]
direction TB
DASH["Dashboards"]
REP["Reports"]
ALERTS["Alerts"]
end
DataCollection --> Processing
Processing --> Visualization
%% Apply styles
class DataCollection collection
class Processing processing
class Visualization visualization
class LOG,MET,TRC,AGG,ANA,ALT,DASH,REP,ALERTS node
Key Metrics
Category |
Metric |
Threshold |
Performance |
Response Time |
< 100ms |
Reliability |
Uptime |
> 99.9% |
Resource |
CPU Usage |
< 80% |
Security |
Failed Auth |
< 1% |
ML |
Model Accuracy |
> 95% |
Security Considerations
Security Architecture
graph TB
subgraph Perimeter
FW["Firewall"]
WAF["Web Application Firewall"]
DDoS["DDoS Protection"]
end
subgraph Authentication
IAM["Identity Management"]
MFA["Multi-Factor Auth"]
JWT["JWT Tokens"]
end
subgraph Monitoring
SIEM["Security Monitoring"]
IDS["Intrusion Detection"]
AUD["Audit Logs"]
end
Perimeter --> Authentication
Authentication --> Monitoring
Security Checklist
Category |
Item |
Status |
Access Control |
Role-based Access |
Required |
Authentication |
Multi-factor Auth |
Required |
Network |
TLS 1.3 |
Required |
Monitoring |
Audit Logging |
Required |
Compliance |
GDPR |
Required |
Next Steps